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Abstract

Recent theoretical results suggest that an array of quantum in-
formation processors communicating via classical channels can
be used to solve fluid dynamics problems. Quantum lattice-gas
algorithms (QLGA) running on such architectures have been
shown to solve the diffusion equation, the Schrödinger equation,
and the Dirac equation. In this report, we describe progress
towards an ensemble nuclear magnetic resonance (NMR) imple-
mentation of a QLGA that solves the diffusion equation. The
methods rely on NMR techniques to encode an initial mass den-
sity into an ensemble of two-qubit quantum information proces-
sors. Using standard pulse techniques, the mass density can
then manipulated and evolved through the steps of the algo-
rithm. We provide the experimental results of our first attempt
to realize the NMR implementation. The results qualitatively
follow the ideal simulation, but the observed implementation
errors highlight the need for improved control.

1 Introduction

The field of quantum information processing (QIP) has
made steady progress over the past decade, driven in
part by the realization that some quantum algorithms
offer a computational advantage over the best known
classical counterparts[1]. To reach a practical improve-
ment, however, most quantum algorithms require a
large number of qubits coupled quantum mechani-
cally, thus making physical implementation difficult.
Recently, however, it has been suggested that some
interesting problems might be solvable by a hybrid
classical-quantum device defined as a type-II quan-
tum computer[2]. A type-II quantum computer is es-
sentially a parallel lattice of small quantum informa-
tion processors that share information through clas-
sical channels. Such a device offers the experimental

∗To whom correspondence should be addressed. E-mail:
dcory@mit.edu

simplification that quantum coherences need only be
maintained locally within each small quantum proces-
sor. Using this architecture, it might be possible to in-
crease the range of problems that small quantum pro-
cessors can tackle by classically stringing many of them
together. A type-II quantum computer may thus serve
as an intermediate architecture between few-qubit and
large-scale quantum computers.

In this report, we explore the experimental aspects
of building a type-II quantum computer using nuclear
magnetic resonance (NMR) techniques. Quantum in-
formation processing by NMR usually employs a liquid
sample of molecules containing spin- 12 nuclei and that
is subjected to a strong magnetic field[3]. A typical
field B0 of ∼ 10 T creates an energy difference ∆E
between the aligned and antialigned spin states suffi-
cient to drive the system to an equilibrium state with
net magnetization. At room temperature, ∆E/kT is
about 10−6, so that the net magnetization is relatively
small, but, given the large number of molecules in the
sample (∼ 1018), it is still easily detectable. The en-
tire spin ensemble is accurately described by a reduced
density matrix of only the intramolecular spin degrees
of freedom. The ensemble nature of the NMR sample
thus makes it inherently applicable to parallel com-
putation. A type-II architecture can be mapped onto
a NMR sample by creating a correspondence between
the sites of the lattice and spatially distinct spin en-
sembles. Using magnetic field gradients and radiofre-
quency (RF) pulses, information in the lattice can be
encoded, manipulated, and read out. As a first test of
the NMR implementation, we chose a basic quantum
lattice gas algorithm (QLGA) that solves diffusive dy-
namics in one dimension.
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2 Lattice-Gas System

The diffusion of a mass density ρ is governed by

∂ρ

∂t
= D

∂2ρ

∂t2
(1)

The above equation corresponds to the macroscopic
effective field theory result. Its relation to the lattice-
gas dynamics is seen by breaking space into an array
of lattice sites with occupation probabilities assigned
to each site[4, 5]. The ensemble average mesoscopic
dynamics are controlled by the transport equations

f1(n,m+ 1) = f1(n,m) +
1
2
[f2(n,m) − f1(n,m)] (2)

f2(n,m+ 1) = f2(n,m) − 1
2
[f2(n,m) − f1(n,m)] (3)

where f1 and f2 represent occupation probabilities
and the bracketed terms represent a collision opera-
tor. The mass density ρ is the sum of f1 and f2. The
indices n and m correspond to lattice site and time
step, respectively. The connection between the dif-
fusion equation and the transport equations may be
seen by taking the Chapman-Enskog expansion of the
lattice Boltzmann equation written in terms of occu-
pation probabilities.

3 Quantum Lattice-Gas Algo-
rithm

The quantum lattice-gas implementation relies on
mapping each initial occupation probabilities f1 and
f2 into the corresponding single-particle states of two
quantum bits,

|q1,2(n,m)〉 =
√
f1,2(n,m)|1〉 +

√
1 − f1,2(n,m)|0〉

(4)
where |q1,2(n,m)〉 are the single-particle states of the
first and second qubits, and |0〉 and |1〉 correspond to
the eigenstates of a two-level system. The resulting
two-qubit wave function for a site becomes

|ψ(n,m)〉 =
√
f1f2|11〉 +

√
f1(1 − f2)|10〉 (5)

+
√
(1 − f1)f2|01〉 +

√
(1 − f1)(1 − f2)|00〉

where |ψ(n,m)〉 spans the Hilbert space of two coupled
quantum systems. After initialization, the algorithm
calls for a collision operation

|ψ′(n,m)〉 = Û |ψ(n,m)〉 (6)

carried out with via unitary evolution by a “square-
root of swap” gate Û . The gate Û can be written as

Û =




1 0 0 0
0 1

2 − i
2

1
2 + i

2 0
0 1

2 + i
2

1
2 − i

2 0
0 0 0 1


 (7)

in the standard basis. The next step in the computa-
tion requires a measurement of the occupation num-
bers

f ′
1,2(n,m) = 〈ψ′(n,m)|n̂1,2|ψ′(n,m)〉 (8)

where the number operators n̂1,2 are defined as

n̂1 =




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 , n̂2 =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 .

(9)
The measured occupation numbers f ′

1 and f ′
2 are then

streamed to nearest lattice sites in opposite directions,
as given by

f1(n,m+ 1) = f ′
1(n+ 1,m) (10)

f2(n,m+ 1) = f ′
2(n− 1,m) (11)

The entire diffusion algorithm can be summarized as
repeated applications of the following four steps:

1. Initialization of occupation probabilities in each
spatially distinct site

2. Application collision operator, Û , at all sites

3. Readout of the expectation value of the number
operators

4. Determination of the new occupation probabili-
ties by streaming to nearest neighbors

4 NMR Implementation

4.1 Mapping to Spin Ensembles

The first step in creating an experiment to study the
implementation of type-II quantum computer is to de-
fine a mapping of the theoretically required quantum
states to a real physical system. In the liquid-state
NMR case, the required quantum states |ψ(n,m)〉 are
physically encoded onto spin ensembles described by
density matrices σ(n,m)

|ψ(n,m)〉 ↔ σ(n,m) (12)
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Figure 1: The cylindrical sample of chloroform employed in
this experiment is addressed in slices by the combined action of
magnetic field gradients and shaped RF pulses. Each slice rep-
resents a node in the lattice of quantum information processors

However, the thermal equilibrium of liquid-state NMR
systems is a highly mixed state that is not immediately
applicable to quantum computing experiments. As a
result, the thermal equilibrium state must first be reset
to a pseudopure state of the form [6, 7]

σ(n,m) = 1 − ε|ψ(n,m)〉〈ψ(n,m)| (13)

The above pseudopure state transforms identically
to the corresponding pure state |ψ(n,m)〉. Each
subensemble σ(n,m) is in turn composed of a large
number(∼ 1018) of individual molecules distributed
within a slice of a cylindrical sample. More formally,
the reduced density matrix σ(n,m) at a site is

σ(n,m) = Tr�r

[∑
�r

T
[ z

∆z
−

(
n− 1

2

)]
|φ(�r,m)〉〈φ(�r,m)|

]

(14)
where |φ(�r,m)〉 is the nuclear spin state of a single
molecule located at position �r, T (z) is the “top hat”
function

T (z) =
{

1, |z| ≤ 1
2

0, |z| > 1
2

(15)

that selects the relevant spatial slice with thickness
∆z, and Tr�r denotes the partial trace over the spa-
tial degree of freedom. The variable z represents the
corresponding coordinate of the vector �r. Figure 1 de-
picts the geometrical arrangement of the slices relative
to the gradient and RF coils in the NMR probe. As
evident from the figure and equation 14, a stack of
pseudopure states becomes the physical realization of
the required lattice.
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Figure 2: The picture shows the chloroform molecule and the
nuclear spin energy level diagram.

4.2 Control and Measurement of Spin
System

In our particular test, we implemented a two-qubit
diffusion algorithm using a solution of chloroform
(13CHCl3) where the hydrogen and the labeled carbon
nuclei served as qubits 1 and 2, respectively. Figure
2 shows the energy level diagram of the spins and a
picture of the molecule. As shown in the diagram, the
proton splitting is four times larger than the carbon
splitting, and both splittings are a small fraction of
kT.

In the absence of a magnetic field gradient, the
Hamiltonian of the spin system in the doubly-rotating
frame is

H(t) =
πJ

2
σ1

zσ
2
z +

[
w1

x(t)σ
1
x + w1

y(t)σ
1
y

]
(16)

+
[
w2

x(t)σ
2
x + w2

y(t)σ
2
y

]

The first term denotes the scalar interaction be-
tween the spins, while the remaining terms are the
externally-controlled RF Hamiltonian. The operators
of the form σ1,2

x,y,z are Pauli spin matrices correspond-
ing to each qubit, and the scalar coupling Hamiltonian
is a Kronicker product of the single-spin operators.
The RF part of the Hamiltonian generates arbitrary
single spin rotations with high fidelity when the nuta-
tion rates w1,2

x,y are much stronger than J , the scalar
coupling constant.

As mentioned before, the collision operator Û for
this algorithm is the square-root of swap gate. The
unitary operator Û can be written as

Û = exp
[
−iπ

8
(σ1

xσ
2
x + σ1

yσ
2
y + σ1

zσ
2
z)

]
(17)

if an irrelevant phase is ignored. Written in this form,
it is clear that Û can be decomposed into the product
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Figure 3: The pulse sequence for a single time step of the algorithm begins with the pseudopure state preparation. Gradients are used
to perform the necessary nonunitary operations required for equalizing the magnetization of the two spin species and to prepare the
pseudo pure state. The lattice initialization is accomplished by applying weak RF shapes in the presence of a magnetic field gradient
in the Z direction. A decoupling sequence prevents the scalar coupling from interfering with the initialization. The collision operation
is performed by a sequence of coupling delays and strong RF pulses. The collision pulse sequence is applied without a gradient so that
all of the spins in the lattice feel the same operation. Readouts of both the carbon and hydrogen magnetizations are carried out on the
hydrogen channel in two separate experiments.

of three commuting terms. Each term can be imple-
mented by making use of the scalar coupling Hamil-
tonian plus appropriate single-spin rotations[8]. The
operator Û is applied to all the subensembles σ(n,m)
such that

σ′(n,m) = Ûσ(n,m)Û† (18)

in analogy with equation 6.
The final steps of the algorithm are to read the oc-

cupation numbers encoded in σ′(n,m) and to stream
them to nearby sites. The readout is accomplished by
noticing that equation 8 can be rewritten in terms of
the z-Pauli matrices as

f ′
1,2(n,m) = 〈ψ′(n,m)|1 − σ1,2

z

2
|ψ′(n,m)〉 (19)

=
1
2

[
1 − 〈ψ′(n,m)|σ1,2

z |ψ′(n,m)〉
]

using the fact that n̂1,2 = 1
2 (1 − σ1,2

z ). The last equa-
tion can be written in the final form

f ′
1,2(n,m) =

1
2

[
1 −M1,2

z

]
(20)

where the trace has been replaced by the z-
magnetization M1,2

z . The z-magnetization is easily
measured in NMR by applying a “read” π/2 pulse
and observing the transverse magnetization. The mea-
sured values f ′

1,2 can be streamed on a classical com-
puter and then reinitialized onto the lattice.

4.3 Pulse Sequence

The diagram in figure 3 shows the main parts of a sin-
gle time step of the NMR implementation: pseudop-
ure state preparation, lattice initialization, collision,
and readout. The top two lines correspond to opera-
tions on the two qubits (H and C), while the third line
shows the required gradient pulses. The pseudopure
state was prepared by first equalizing the magnetiza-
tions of the two spins, followed by a pseudopure state
creation sequence[9] . The starting occupation num-
bers for each time step where then encoded using weak
shaped RF pulses on the two spins applied simultane-
ously with a linear magnetic field gradient. Because
the total RF nutation angle was small, the shape of the
pulse was determined by taking the Fourier transform
of the desired magnetization profile[10]. This step is
related to slice-selection in magnetic resonance imag-
ing(MRI). A decoupling sequence was applied simul-
taneously with the RF shape, thus averaging out the
effects of the scalar coupling on the RF excitation.

The collision operator was implemented by decom-
posing Û into sequences of scalar coupling delays and
RF pulses. The final readout was performed by record-
ing the spectra in the presence of a weak gradient. The
classical communication part of the algorithm was ab-
sorbed into the encoding operation for the subsequent
time step. A linear phase ramp was added to the RF
shape, effectively shifting the frequency of the excita-
tion. Since the data on the two spins was to be shifted
in different directions, the phase ramps for the two RF
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pulses had opposing slopes.

5 Results

The two figures 4 and 5 below show the results of
preliminary experiments and, for comparison, the cor-
responding ideal simulation of the NMR implemen-
tation. The experiments where performed using 16
nodes iterated through 12 time steps of the algorithm.
As can be seen, the broad features of the diffusion
can be seen, but large errors are present in the imple-
mentation. The errors are caused by problems in the
decoupling sequence, errors in the Fourier transform
approximation, and other experimental imperfections.
We are continuing to refine the experiments and we
expect to correct these errors in the near future with
improved results to be published in a subsequent paper
[11].

6 Conclusion

Ensemble NMR techniques have been successfully used
to study the experimental details involved in quantum
information processing. The astronomical number of
individual quantum systems (∼ 1018) present in typ-
ical liquid-state spin ensembles greatly facilitates the
problem of measuring spin quantum coherences. In
addition, the ensemble nature has been successfully
utilized to create the necessary pseudopure states and
to systematically generate nonunitary operations over
the ensemble[12]. In this implementation, we again
exploit the ensemble nature, but this time as a means
of realizing a lattice of quantum information proces-
sors. The implementation combines the advantages
of quantum computation at each node with parallel
computation throughout the lattice. The large size
of the NMR ensemble provides, in principle, sufficient
room to explore large lattices. Although achieved ex-
perimental results point to the need for better control,
the experiments are a first step towards realizing the
quantum lattice gas algorithm on a NMR quantum
information processor.
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Figure 4: The plots show a simulated run of the ideal quantum lattice gas algorithm for diffusion. The top left plot contains the
first step, followed to the right and then down the rows by subsequent time steps. The dotted lines represent the initialized occupation
numbers f1,2 for each spin, while the solid lines represent the occupation numbers f ′

1,2 present after the collision. The x-axis labels the
node number and runs from 1 to 16.
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Figure 5: The experimental results for the corresponding time steps of the simulations from figure 4. Although the general features
follow the simulation, the experimental results are not of high fidelity and suggest a need for more precise control. The x-axis labels the
observed spectral frequency. The actual nodes used in the experiment reside in the region between -200 Hz and 200 Hz. The outlying
region is included for reference.
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